These calculations should be used when designing the outlet structures for extended wet and dry detention basins (Sections 4.7 and 4.8). The water quality outlet size and the trash rack design will vary depending on structure type. Be sure to follow the design procedure outlined in Sections 4.7 and 4.8 to determine appropriate water quality outlet type.

WQ Outlet Design				
			Single Orifice	
	Orifice diamete	er		
	Equation G.1	$D_0 = 2$	$4 \frac{z_{WQ}}{c_{WQ}}$	
			$VC_o \times 11 \times \sqrt{2 \times g \times H_{WQ}}$	
	Where:			
	Do	=	Orifice diameter (inches)	
	Q_{WQ}	=	Average WQ outflow rate (cubic feet per second)	
	Co	=	Orifice coefficient (1.0 for circular entrance, 0.62 for square-	
			edged entrance)	
	H_{WQ}	=	Average head of WQv over invert of WQ outlet (feet)	
			Perforated riser/Orifice Plate	
	Outlet area per	r perforat	tion row	
			WQ_{ν}	
	Equation G.2	$A_0 = -\frac{1}{n}$	$\times Z_{ma}^{2} + 0.22Z_{ma} - 10$	
	Where		$= WQ$ $\cdots = WQ$ $\cdots = WQ$	
	vvnere:	_	Recommonded merimum cutlet area nor row (course inches)	
	A0 WO	_	Weter quality volume (acre feet)	
	VVQV Zwa	_	Depth of WOx over above permanent pool (feet) (determined	
	ZwQ	-	by designer)	
	n	=	Manning's 'n' for perforated pipe	
			halling on for periorated pipe	
	Circular perfor	ration dia	ameter per row	
		D [$\overline{4A_{o}}$	
	Equation G.3	$D_1 = \sqrt{2}$	Π	
	Where	•		
	D_1	=	Circular perforation diameter per row (inch)	
	Ao	=	Maximum outlet area per row of perforations (square inch)	
	Circular perfor	ration dia	ameter	
		D	$\overline{4A_o}$	
	Equation G.4	$D_{perf} =$	$\sqrt{\prod n_c}$	
	Where			
	D	_	Circular perforation diameter (inch)	
	A	=	Maximum outlet area per row of perforations (square inch)	
	nc	=	Number of columns of perforations	
	Number of per	foration	rows	
		12	27	
	Equation G.5	$n_{f} = -$		
	Whore	-	<i>SC</i>	
	<i>vviiere</i> .	=	Number of rows of perforations	
		=	Depth of WO_V over above permanent pool (feet)	
	Sc	=	Center to center column spacing if $n > 1$ S _c = 4 inch	
			concerto content opacing, in it 1, of mith	

V-notch Weir

Weir angle (with calculator set in radians)

Equation G.6
$$\theta = 2\left(\frac{180}{\Pi}\right) \arctan\left(\frac{Q_{WQ}}{C_V \times H_{WQ}^{5/2}}\right)$$

Where:

θ	=	V-notch weir angle (degrees)
Q_{WQ}	=	Average WQ outflow rate (cubic feet per second)
Cv	=	V-notch coefficient (2.5 is typical value)
H_{WQ}	=	Average head of WQv over invert of WQ outlet (feet)

```
OR
```

Weir angle (with calculator set in degrees)

Equation G.7 $\theta = 2 \arctan \theta$	$\left(\frac{Q_{WQ}}{C_V \times H_{WQ}^{5/2}}\right)$
--	---

Where:

θ	=	V-notch weir angle (degrees)
Q_{WQ}	=	Average WQ outflow rate (cubic feet per second)
Cv	=	V-notch coefficient (2.5 is typical value)
H_{WQ}	=	Average head of WQv over invert of WQ outlet (feet)

Top width of V-notch weir

Equation G.8	$W_V = 2$	$\times Z_{WQ} \times \tan\left(\frac{\theta}{2}\right)$
Where:		
W_{V}	=	V-notch top width (feet)
θ	=	V-notch weir angle (degrees)
Zwq	=	Depth of WQv over above permanent pool (feet)

Trash Rack Design

Single Orifice

Water quality outlet area

Equation G.9 $A_{oT} = \frac{\Pi}{4} D_o^2$ Where: $A_{OT} =$ Outlet area (square inches) $D_0 =$ Orifice diameter (inches) calculated in Equation G.1

Trash rack open area

Equation ($G.10 A_T =$	$A_{OT} \times 77e^{(-0.124D_O)}$
Where:		
A_{T}	=	Required trash rack open area (square inches)
Aot	=	Outlet area (square inches) calculated in Equation G.9
Do	=	Orifice diameter (inches) calculated in Equation G.1

Perforated riser/Orifice Plate

Water qualit	ty outlet a	rea
Equation G	$5.11 A_{OT} =$	$= A_O \times n_C \times n_F$
Where:		
Aot	=	Outlet area (square inches)
Ao	=	Maximum outlet area per row (square inches) calculated in
	Equa	tion G.2.
n_C	=	Number of perforation columns calculated in Equation G.4
n_f	=	Number of perforations rows calculated in Equation G.5

Trash rack open area

Equati	on G.12 $A_T = \frac{A}{T}$	$\frac{b_{OT}}{2} \times 77e^{(-0.124D_1)}$
Where	:	
AT	=	Required trash rack open area (square inches)
Aot	=	Outlet area (square inches) calculated in Equation G.11
D_1	=	Circular perforation diameter per row (inch) calculated in
	Equation G.3.	

V-notch Weir

Water quality outlet area

Equation G.13 $A_{oT} = \frac{1}{2}W_V \times \sin\left(\frac{\theta}{2}\right)$ Where: $A_{OT} =$ Outlet area (square inches) $W_V =$ V-notch top width (feet) cal

=	V-notch top width (feet) calculated in Equation G.8.
=	V-notch weir angle (degrees) calculated in Equation G.7.

Trash rack open area

θ

Equation ($G.13 A_T = -$	$4A_{OT}$
Where:		
AT	=	Required trash rack open area (square inches)
Aot	=	Outlet area (square inches) calculated in Equation G.13

Designer:		
I. Basin Water Quality Storage Volume		
Step 1) Tributary area to EDDB, A_T (ac)	A _T (ac) =	50.0
Step 2) Calculate WQv	WQv (ac-ft) =	2.4
Step 3) Add 20 percent to account for silt and sediment deposition in the basin.	V _{design} (ac-ft) =	2.9
Ila. Water Quality Outlet Type		
Step 1) Set water quality outlet type: Type 1 = single orifice Type 2 = perforated riser or plate Type 3 = v-notch weir	Outlet Type =	1.0
Step 2) Proceed to step 2b, 2c, or 2d based on water quality outlet type selected		
IIb. Water Quality Outlet, Single Orifice		_
Step 1) Depth of water quality volume at outlet, Z $_{\rm WQ}$ (ft)	Z_{WQ} (ft) =	3.0
Step 2) Average head of water quality volume over invert of orifice, H $_{\rm WQ}$ (ft) H $_{\rm WQ}$ = 0.5 * Z $_{\rm WQ}$	H _{WQ} (ft) =	1.5
Step 3) Average water quality outflow rate, Q_{WQ} (cfs) $Q_{WQ} = (WQv * 43,560)/(40 * 3,600)$	Q _{WQ} (cfs) =	0.7
Step 4) Set value of orifice discharge coefficient, C $_{\circ}$		
	C _o =	0.6
Step 5) Water quality outlet orifice diameter (m inimum of 4 inches), D _o (in) $D_o = 12 * 2 * (Q_{WQ}/(C_o * \pi * (2 * g * H)^{0.5}))^{0.5}$ (If orifice diameter < 4 inches, use outlet type 2 or 3)	D _o (in) =	4.7
Step 6) To size outlet orifice for EDDB with an irregular stage-volume relationship, use the Sing	gle Orifice Worksheet	
Ilc. Water Quality Outlet, Perforated Riser		
Step 1) Depth at outlet above lowest perforation, Z $_{\mbox{\tiny WQ}}$ (ft)	Z_{WQ} (ft) =	
Step 2) Recommended maximum outlet area per row, A $_{o}$ (in ²) A $_{o}$ = (WQv)/(0.013 * Z_{WQ}^{2} + 0.22 * Z_{WQ} - 0.10)	$A_o(in^2) =$	
Step 3) Circular perforation diameter per row assuming a single column, D $_{\rm 1}$ (in)	D ₁ (in) =	
Step 4) Number of columns, n $_{\circ}$	n _c =	
Step 5) Design circular perforation diameter (should be between 1 and 2 inches), D $_{\mbox{perf}}$ (in)	D_{perf} (in) =	
Step 6) Horizontal perforation column spacing when n $_{\rm c}$ > 1, center to center, S $_{\rm c}$ If D $_{\rm perf}$ >/= 1.0 in, S $_{\rm c}$ = 4	S_c (in) =	
Step 7) Number of rows (4" vertical spacing between perforations, center to center), n $_{\rm r}$	n _r =	

Designer:		
Ild. Water Quality Outlet, V-notch Weir		
Step 1) Depth of water quality volume above permanent pool, Z $_{\rm WQ}$ (ft)	Z_{WQ} (ft) =	
Step 2) Average head of water quality pool volume over invert of v-notch, H $_{\rm WQ}$ (ft) H $_{\rm WQ}$ = 0.5 * $Z_{\rm WQ}$	H _{WQ} (ft) =	
Step 3) Average water quality pool outflow rate, Q_{WQ} (cfs) $Q_{WQ} = (WQv * 43,560)/(40 * 3,600)$	Q _{WQ} (cfs) =	
Step 4) V-notch weir coefficient, C $_{\rm v}$	C _v =	
Step 5) V-notch weir angle, θ (deg) $\theta = 2 * (180/\pi) * \arctan(Q_{WQ}/(C_v * H_{WQ}^{5/2}))$ V-notch angle should be at least 20 degrees. Set to 20 degrees if calculated angle is smaller.	θ (deg) =	
Step 6) Top width of V-notch weir Wy = 2*2wo * TAN(0/2)	W _v (ft) =	
Step 7) To calculate v-notch angle for EDDB with an irregular stage-volume relationship, use	the V-notch Weir Worksh	neet
III. Flood Control Refer to local agency specification.		
<u>IV. Trash Racks</u> Step 1) Total outlet area A _n (in ²)	A_{at} (in ²) =	17.0
Step 2) Required trash rack open area, $A_t (in^2)$ $A_t = A_{ot} * 77 * e^{(-0.124 * D)}$ for single orifice outlet $A_t = (A_{ot}/2) * 77 * e^{(-0.124 * D)}$ for orifice plate outlet $A_t = 4 * A_{ot}$ for v-notch weir outlet	A_t (in ²) =	732.1
V. Basin Shape		
Step 1) Length to width ratio should be at least 3:1 (L:W) wherever practicable	(L:W) =	
Step 2) Low flow channel side lining	Concrete: Soil / riprap: No low flow channel:	
Step 3) Top stage floor drainage slope (toward low flow channel), S $_{\rm ts}$ (%) Top stage depth, D $_{\rm ts}$ (ft)	S _{ts} (%) = D _{ts} (ft) =	
Step 4) Bottom stage volume, V _{bs} (ac-ft)	V _{bs} (% of WQv) V _{bs} (ac-ft)	
VI. Forebay (Optional)		
Step 1) Volume should be greater than 10% of WQv	Min Vol _{FB} (ac-ft) =	0.2
Step 2) Forebay depth, Z _{FB} (ft)	Z_{FB} (ft) =	4.0
Step 3) Forebay surface area, A _{FB} (ac)	Min A _{FB} (ac) =	0.1
Step 4) Paved/hard bottom and sides?		

Designer: Checked By: Company: Date: Project: Location:		
VII. Basin side slopes		
Basin side slopes should be at least 4:1 (H:V)	Side Slope (H:V) =	
VIII. Dam Embankment side slopes		
Dam Embankment side slopes should not exceed 3:1 (H:V)	Dam Embankment (H:V) =	
IX. Vegetation		
Check the method of vegetation planted in the EDDB or describe "other"	Native Grass Irrigated Turf Grass Other:	
X. Inlet Protection		
Indicate method of inlet protection/energy dissipation at EDDB inlet		
XI. Access		
Indicate that access has been provided for maintenance vehicles.		

Designer:		
I. Basin Water Quality Volume		
Step 1) Tributary area to EWDB, A _T (ac)	A_T (ac) =	50.0
Step 2) Calculate WQv	WQv (ac-ft) =	4.0
Ila. Permanent Pool Volume		
Step 1) Average 14 day wet season rainfall, R_{14} (in)	R ₁₄ (in) =	2.0
Step 2) Rational runoff coefficient, C C = 0.3 + 0.6 * I I = percent impervious area divided by 100	C =	0.8
Step 3) Permanent pool volume 1, V_{P1} (ac-ft) $V_{P1} = (C * A_T * R_{14})/12$	V _{P1} (ac-ft) =	6.7
IIb. Sedimentation Volume,		
Step 1) Ratio of basin volume to runoff volume, V _{B/R} (from Figure 12; V _{B/R} should be >= 4.0)	V _{B/R} =	4.0
Step 2) Mean storm depth, S_d (in)	S _d (in) =	0.5
Step 3) Impervious tributary area, A _I (ac)	A ₁ (ac) =	42.5
Step 4) Permanent pool volume by Method 2, V _{P2} (ac-ft) V _{P2} = (V _{B/R} * S _d * A _I)/12	V _{P2} (ac-ft) =	6.5
IIc. Permanent Pool Design Volume		
Step 1) Design permanent pool volume, V_P , as larger of volumes calculated in IIa and lib plus 20%	V _P (ac-ft) =	8.0
Step 2) Average permanent pool depth, Z_P (ft)	Z_{P} (ft) =	4.0
Step 3) Permanent pool surface area, A _P (ac)	A_P (ac) =	2.0

Designer:		
Company:		
Date:		
Location:		
Г		
Illa. Water Quality Outlet Type		
Step 1) Set water quality outlet type:	Outlet Type =	2.0
Type 1 = single orifice Type 2 = performed riser or plate		
Type 3 = v-notch weir		
Step 2) Proceed to part IIIb, IIIc, or IIId based on water quality outlet type selected		
IIIb. Water Quality Pool Outlet, Single Orifice		
Step 1) Depth of water quality volume above permanent pool, $Z_{\scriptscriptstyle WQ}$ (ft)	Z_{WQ} (ft) =	
Step 2) Average head of water quality volume over invert of orifice, H_{WQ} (ft)		
$H_{WQ} = 0.5 * Z_{WQ}$	H_{WQ} (ft) =	
Step 3) Average water quality outflow rate Que (cfs)		
$Q_{WQ} = (WQv * 43,560)/(40 * 3,600)$	Q _{WQ} (cfs) =	
Step 4) Set value of orifice discharge coefficient, C_o		
	0	
	C _o =	
Step 5) Water quality outlet orifice diameter (minimum of 1/2 inch), D $_{\rm o}$ (in)		
$D_{o} = 12 * 2 * (Q_{WQ}/(C_{o} * \pi * (2 * g * H)^{0.5}))^{0.5}$	$D_o(in) =$	
(If orifice diameter < 4 inches, use outlet type 2 or 3)		
Step 6) To size outlet orifice for EWDB with an irregular stage-volume relationship, use the Single C	Prifice Worksheet	
IIIc. Water Quality Outlet, Perforated Riser		
Step 1) Depth of water quality volume above permanent pool, $Z_{WQ}\left(ft\right)$	Z_{WQ} (ft) =	3.0
Step 2) Recommended maximum outlet area per row, A_0 (in ²)		
Ao = WQv/(0.013 * Z_{WQ}^{2} + 0.22 * Z_{WQ} - 0.10)	$A_o(in^2) =$	5.9
Step 3) Circular perforation diameter per row assuming a single column, D_1 (in)	D ₁ (in) =	2.8
Step 4) Number of columns, n _c	n _c =	2.0
Step 5) Design circular perforation diameter (between 1 and 2 inches), D_{perf} (in)	D _{perf} (in) =	1.9
Step 6) Horizontal perforation column spacing when n_c > 1, center to center, S_c If D_{perf} >/= 1.0 in, S_c = 4	S _c (in) =	4.0
Step 7) Number of rows (4" vertical spacing between perforations, center to center), n_r	n _r =	9.0

Designer:		
Company:		
Project:		
Location:		
IIId. Water Quality Outlet, V-Notch Weir ⁶		
Step 1) Depth of water quality volume above permanent pool, Z_{WQ} (ft)	Z_{WQ} (ft) =	
Step 2) Average head of water quality pool volume over invert of v-notch, HWQ (ft) $H_{WQ} = 0.5 * Z_{WQ}$	H _{WQ} (ft) =	
Step 3) Average water quality pool outflow rate, Q_{WQ} (cfs)		
Q _{WQ} = (WQv * 43,560)/(40 * 3,600)	Q_{WQ} (cfs) =	
Step 4) V-notch weir coefficient, C_v	C _v =	
Step 5) V-notch weir angle, θ (deg) $\theta = 2 * (180/\pi) * \arctan(Q_{WQ}/(C_v * H_{WQ}^{5/2}))$		
V-notch angle should be at least 20 degrees. Set to 20 degrees if calculated angle is smaller.	θ (deg) =	
Step 6) V-notch weir top width, W_v (ft) $W_v = 2 * Z_{WO} * TAN(\theta/2)$	W_v (ft) =	
Step 7) To calculate v-notch angle for EWDB with an irregular stage-volume relationship, us	se the V-notch Weir Worl	ksheet
IV. Trash Racks		
Step 1) Total outlet area, A _{ot} (in ²)	A_{ot} (in ²) =	106.4
Step 2) Required trash rack open area, A_t (in ²) $A_t = A_{ot} * 77 * e^{(-0.124 * D)}$ for single orifice outlet		
$A_t = (A_{ot}/2) * 77 * e^{V_{ot}/2}$ for orifice plate or perforated riser outlet $A_t = 4 * A_{ot}$ for v-notch weir outlet	A_t (in ²) =	2910.6
V. Forebay		
Step 1) Volume should equal at least 10% of WQv	Min Vol _{FB} (ac-ft) =	0.4
Step 2) Forebay depth, Z _{FB} (ft)	Z_{FB} (ft) =	4.0
Step 3) Minimum forebay surface area, A _{FB} (ac)	Min A _{FB} (ac) =	0.1
Step 4) Paved/hard bottom and sides?		

Designer:		
VI. Littoral Bench		
Step 1) Littoral bench should be 25% - 50% of the permanent pool surface area	Min A _{LB} (ac) = Max A _{LB} (ac) =	0.5 1.0
Step 2) Approximate minimum and maximum bench widths, assuming circular permanent pool		83.4 117.9
Step 3) Design bench width around perimeter of EWDB, W_{LB} (ft)	W_{LB} (ft) =	100.0
Step 4) Bench depth below permanent pool surface, Z_{LB} (ft)	Z_{LB} (ft) =	12.0
VII. Basin side slopes Basin side slopes should be at least 4:1 (H:V)	Side Slope (H:V) =	
VIII. Dam Embankment side slopes Dam Embankment side slopes should be at least 3:1 (H:V) Dam Em	bankment (H:V) =	
IX. Vegetation Check the method of vegetation planted in the EWDB or describe "other"	Native Grass Irrigated Turi Native Aquat Other:	f Grass tic Species
X. Inlet Protection Indicate method of inlet protection/energy dissipation at EWDB inlet		